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Weidenmuller.24 Nonradiative effects due to electron 
screening, nuclear electromagnetic form factor effects, 
iT-capture competition and second forbidden matrix 
element corrections seem to be agreed upon.32 All of 
these effects are included in Table I. 

I t is fair to say that a vector boson can explain the 
current muon lifetime discrepancy, although its mass 
should not be much greater than 500 MeV. If the indi
cations from CERN3 that M ~ 1.3MP are confirmed, we 

32 L. Durand, L. F. Landowitz, and R. B. Marr, Phys. Rev. 
Letters 4, 620 (1960). 

T TNITARITY implies that a Regge-pole term 
U ftt)/i-*(t) (i) 

near a sharp resonance at t=to, aR(k) = l satisfies the 
relations PR~T (the width of the resonance) and 
&I<&PR- Since &R is positive at to, the latter condition 
implies that the phase of /3 must essentially be a multiple 
of 2TT at a resonance.1 This is a strong restriction on the 
phase; the value it takes, namely, —0, 2w, etc., deter
mines to a large extent how fast # or rather the reduced 
residue y (see below) falls off for / < 0 . The behavior in 
the negative t region is of some interest since it was 
pointed out recently2 that if y of the Pomeranchuk pole 
(P) showed a sharp diffraction-type fall off for small — t, 
then the Regge-pole approximation3 may still be ade
quate in explaining the high-energy behavior of scat
tering amplitudes. The question of shrinkage or absence 
of it can then be understood in terms of appropriate 
linear combinations of P with other important poles.2 

We shall show below that if f° lies on the P trajectory 
and if the phase is 2w at // then one obtains an exponen
tial type falloff for small —/, with a width comparable 
to the one observed experimentally, and a power falloff 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 More precisely, 2mr-{-0(<xi). For a sharp resonance, a/<<Cl. 
2 B. R. Desai, Phys. Rev. Letters 11, 59 (1963). 
3 References to the earlier theoretical work are given in Ref. 2. 

can only conclude that a sizeable discrepancy still re
mains to be explained. 
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for large — t.A Potential theory results, however, indi
cate that near a resonance the phase should stay small 
and not approach 2ir.5 If this is assumed to be true also 
for P then we find that it is impossible for y to achieve 
a diffraction-type behavior; the width turns out to be 
at least an order of magnitude larger than the experi
mental values. This would strongly suggest that the 
pole-hypothesis is inadequate and that perhaps other 
singularities in addition to the commonly assumed poles 
play an important role. 

Consider elastic 7T7T scattering with s the square of the 
c m . energy and / the square of the momentum transfer. 
We shall take BeV as the unit of mass. For large s, the 
contribution of a Regge pole with position a(t), to the 
scattering amplitude Ai(s,t) is given by 

2 ^ 0 r ) 1 / 2 ( 2 a + l ) r ( i + a ) 

X - W ) , (2) 
\ sinxa / \2M2/ 

4 Even if f° turns out to be 1~ or 3~ [see W. Frazer. S. Patil, and 
N. Xuong (to be published) ] the essential points of this paper will 
not change provided that there exists a 2+ particle on the P 
trajectory at a higher mass (<2 BeV). 

5 A. Ahmadzadeh, thesis, University of California (un
published). The results, based on Yukawa potentials, were com
municated to me by G. F. Chew. 
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At a sharp resonance the phase of a Regge residue (3(t) should be essentially a multiple of 2x. The value 
it takes determines to a large extent the falloff rate of /3 and of the reduced residue y=p/va for / ̂  0. If f° lies 
on the Pomeranchuk trajectory and if the phase there is lie then it turns out that y if) falls off exponentially 
for small — t with a width comparable to the one deduced from the widths of the high-energy diffraction 
peaks, and for large —/, y(t) has a power fall-off. On the other hand, if the phase at f° remains small then 
the width is at least an order of magnitude larger. The latter case is indicated on the basis of the potential 
theory results. However, it is possible that the former may be a purely relativistic phenomenon peculiar 
to the Pomeranchuk pole in which case the Regge-pole hypothesis would be consistent with the high-energy 
experiments. 
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where 

7(0=(^2AOa(l)/5(0. (3) 

M is the nucleon mass, /=4(v i+w7 r
2) , / is the isotopic 

spin index, and pi is the element of crossing matrix. For 
the P pole a(0) = 1 and Pl=\ for all J( = 0, 1, 2). From 
the optical theorem, Y(0 ) = (0.06)avir, where ov*, in mb, 
should be about 15 from the factorization theorem.6 

In the t channel, near the f° resonance, t=tf, 
ait(tf) = 2, and the D wave should be well represented 
by the single term 

0(fl/W(O 
(4) 

tf-t-i[_aI(t)/aR'{t)~l 

if ai is small, where 
ai(tf) = Tf(tfy'W(tf) (5) 

and from unitarity, 

Mf)<&R(tf). (7) 

Tf is the width of / ° and aR
f(tf) is the slope of the P tra

jectory at tf. Experimentally, tf=1.56 and T/—0.20. 
As a reasonable estimate we shall take aR(tf) to be 1. 
I t turns out that a change by a factor of 2 in the slope 
changes the diffraction width by not more than 10%. 

The reduced residue y{t) is real along the real axis 
except for a cut from t= ^mj to °o. A phase representa
tion can, therefore, be written as follows: 

y(t) = y(0)e*w (8) 

t /*°° dtf 

irJimSW-ty 

where the phase T/J vanishes at threshold.7,8 At infinity, 
on the basis of the strip-approximation result of Chew and 
Jones9 the phase must approach ew, where e^ 1. Note 
that the expression (8) is arbitrary up to a finite number 
of zeros. The only strong evidence for a zero exists not 
for P, which is under consideration here, but for the oo 
pole.10 Experimentally it is observed that at a given 
energy, dcr/dt for "pp at t= 0 is much larger than that for 
pp and falls off very rapidly as —2 increases.11,12 In fact, 
it goes below the pp value at around — £—0.15. A similar 

6 M . Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N. 
Gribov, and I. Pomeranchuk, Phys. Rev. Letters 8, 343 (1962). 

7 A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962). 
8 R. G. Newton, J. Math. Phys. 3, 867 (1962). 
9 G. F. Chew and C. E. Jones, University of California Radiation 

Laboratory Report UCRL-10216 (unpublished). 
10 F. Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev. 

Letters 9, 183 (1962). 
11 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 

Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 (1963); 10 
543 (1963); 11, 425 (1963). 

12 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 503 (1963). 

phenomenon occurs for K~p—K+p.12 At the crossover 
point, therefore, ywW should be zero since it occurs with 
different signs in pp(K+p) and Jp(K~p). Such zeros are 
possible if one has long-range attraction for co followed 
by a short-range repulsion. As far as P is concerned, we 
shall, for the present, ignore the zeros. 

An approximate analytical expression for i}r(t) of P 
satisfying the above conditions is the following: 

i?i(0 = «r[( /-4m i r
a) / ( /+c)]>o, ^ 4 w „ 2 , e^ 1, (10) 

where X0=a(4w2
7 r)+i and c is a positive constant. 

There is an additional logarithmic factor in (10) which 
has a negative sign near threshold but becomes positive 
eventually.7 The effect of neglecting this factor on the 
width or on T/(0) (see below) should not be large if at the 
same time we have rji(tf) = 2mr with n^ 1. The fact that 
this is a very large value attained at only moderately 
large energies means that the negative contribution of 
the logarithmic factor can come only from a narrow re
gion near threshold where it will be suppressed by the 
strong threshold behavior (X0> 1). We have no reason to 
believe that between threshold and f° there are any 
sign changes other than the one mentioned above. If 
they do occur and if the amplitudes of the oscillations 
are not very large, however, the same arguments can be 
applied as above to say that their contributions should 
be small. Furthermore, when TJI at f° is large the knowl
edge of 7jR(tf) [see Eq. (11)] and of the behavior of TH 
at threshold and infinity are strong enough to fix the 
value of r7/(0) within a small range. For the case where 
rji(tf) is negligibly small, however, any sign changes will 
very likely reduce the value of r[ (0). The expression (10) 
in that case will allow us only to give an upper bound on 
V(0). 

Since a(0) is small (^0.2) on the basis of the irp 
data2,11 we shall take a(4w T

2 )~a(0)= 1. Thus, we have 
two relations deduced from (7) and (8): 

**(*,) = hJ = P ~ / — -ifKO (11) 
L 7 ( 0 ) J 7T )^t'{t'-tf) 

and1 

<qi{tf)~2mr, » = 0, 1, • • • , (12) 

which determine the values of e and c. 
One of the questions we are concerned with is whether 

y{t) has a sharp exponential-type behavior for small 
— L If we denote by B the (width) - 1 of da/dt, then 
since da/dt^y2(t)(s/2M2)2[a^-1] and s/2M2=mvM-2E 
o^mvE, we obtain 

B = 2[i?
,(0)+a ,(0) l n ( w . E ) ] , (13) 

where E is the lab energy. One would expect B to be 
about (2m7r)~2^10 since the radius of interaction is 
about (2w7r)~

1. Experimental values for irp, pp, etc. are 
roughly of the same order.11 Since a'(0) is small the 
second term in (13) in the energy interval of about 
10-20 is quite small and therefore the major portion 
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of the (width)"1 should be contained in ^'(0). For large 
— t,y2(t) behaves as |/ |~2e and on the basis of the pp 
data, e should be about 2.5.13 

Among the many choices in (12) we shall consider the 
first two. I t is clear that a larger phase at tf implies 
more oscillations in y(t) for t>4mT

2, and, therefore, if 
7(0) is held fixed, implies a sharper falloff for / ^ 0 . If 
we take 171== 2T at tf, then r?'(0) is 4.9. The value of B 
obtained from (13) is then roughly what one observes in 
the high energy experiments. The value of e is 3.4, not too 
different from the experimental results.13 Also for phe-
nomenological purposes, a good approximation to 7(0 
for ^ 0 is found to be 7 ( 0 ) ( l - ^ o ) ~ e , w h e r e h(>kmS) 
is essentially the point where TJR achieves its maximum 
value. In particular, e~2.5 and t^O.S give a good fit to 
the diffraction data. 

Note also that the value of 7?'(0) and, therefore, of B 
is proportional to 7(0), the total cross section. B de
pends inversely on Tf, the width of f°. These proper
ties are consistent with what one would normally ex
pect of a function which gives the diffraction peak. 

Consider now the case where v\i is small at tf. For a 
sharp resonance, rji should be roughly of the order of 
a j . However, in order to obtain a firm upper bound, we 
shall take 771=71-/4 (i.e., PI=PR) at tf. The value of 
rjr(0) then is 0.6 and e is 1.2. Since these are overesti
mated values, the actual value of B obtained from (13) 
will be at least an order of magnitude smaller than the 
experimental results. Potential-theory results seem to 
favor this alternative.5 The point is that if there is a 
sharp resonance then it is quite likely that (1) would 
satisfy unitarity for l—au{ti), for t\ up to the turning 

13 R. Serber, Phys. Rev. Letters 10, 357 (1963). 

point of the trajectory.14 By writing (1) in the Breit-
Wigner form, we observe that since aj remains small 
and positive, ($R should not be expected to change sign 
as h increases from threshold towards the resonance 
region. Therefore, r\j should remain small at //, instead 
of approaching 2-K. 

In summarizing, let us consider the above results 
vis-a-vis the Regge-pole hypothesis. I t was recently 
pointed out by Desai2 that the pole approximation may 
still be adequate if the following assumptions are made: 
(i) a(0) should be small in order to understand the 
absence of strong shrinkage in wp scattering, (ii) The 
experimentally observed sharp exponential fall off for 
small — t and a power falloff for large — t should then be 
given by 7(0- (hi) The shrinkage in pp and K+p should 
essentially come from the co-pole which happens to be 
absent in icp. One of the predictions of this model, 
namely that the shrinkage in K+p should be inter
mediate between wp and pp is borne out by the recent 
experiments.12 As mentioned earlier, one will have to 
make the additional assumption of ya(t) having a zero 
in order to explain the "pp and K~p scattering. But the 
most crucial assumption is (ii). If the potential theory 
results, mentioned above, hold also for the P trajectory, 
then y{f) will not have a sharp falloff and it would be 
impossible to understand the high-energy behavior in 
terms of poles alone. On the other hand, in the rela-
tivistic case, the effect of inelastic channels or nearby 
trajectories or perhaps cuts in the unitarity relation 
may enable PR to change sign before reaching the reso
nance region. In that case the close agreement we have 
found with experiments will not be just a coincidence. 

14 G. F. Chew (private communication). 


